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TECHNICAL MEMORANDUM X-64874

ROBUST DESIGN OF DYNAMIC OBSERVERS

I. INTRODUCTION

For the linear system

)(t) = A x(t)

(1)

y(t) = Cx(t) , x(0) = xo

the most common form of (identity) observer encountered in the literature (see Reference

1 and the references cited therein) is the system

z(t) = M z(t) + Ky(t) , z(0) = zo , (2)

where

M = A - K C (3)

K = Ko , (4)

and Ko is chosen so that A - Ko C is stable and the error e(t)= x(t) - z(t) which

is governed, subject to (3) and (4), by

6(t) = (A - Ko C) e(t)

converges to zero at an acceptable rate. Thus, if (A,C) is an observable pair, the observer

error e(t) can be made to converge, subject to (3) and (4), with an arbitrary set of

characteristic exponents, independent of the dynamics of the system (1).



If attention is focused on the observer as a device that is ultimately to be built

with physical components (as opposed to idealized mathematical elements whose

parameters can be set exactly), a problem of immediate interest is: what is the behavior

of the observation error if the observer system matrix M and gain matrix K fail to

satisfy equations (3) and (4) precisely and under what conditions can satisfactory con-

vergence of the error be guaranteed under small parameter perturbations?

The above question is answered in this paper and it is shown that almost any

perturbation of equations (3) and (4) will cause at least the observable modes of the

system (1) to appear in the error response. Hence, if (1) contains unstable or under-

damped modes (and these modes must be observable for satisfactory observer action),

the error response of the observer will fail to converge or will decay slowly unless the

observer parameters are adjusted to satisfy (3) and (4) with infinite accuracy. It is then

shown that the acute sensitivity of the error to perturbations in the gain matrix K can

disappear only if the observer is realized in the closed loop form (15); however, in this

case, the action of the observer maps A and C are required to be identical to those

of A and C at least on the eigenspace of unstable modes of A.

The results of the paper prove that "robust" observers cannot be constructed

unless (a) the observer is built as a closed loop device, and (b) an accurate model of the

unstable system dynamics is available and can be precisely duplicated. The treatment

in this paper is restricted to (identity) full state observers; however, an immediate con-

sequence of the results presented here is that the reduced order observers that have been

reported in the literature (see Reference 1 and the references cited therein) fail to be
"robust." The problem of designing "robust" low order observers is of great practical

importance, and it is hoped that this paper will stimulate research into this area of

observer theory.
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II. MAIN RESULTS

Let X, Y with dimension X = n and dimension Y = m denote real linear

vector spaces associated with (1) and (2) with A :X - X, C :X - Y, M :X - X and

K Y -- X being the corresponding linear maps. A, C, etc., will also denote matrix

representations of these maps. The kernel (null space) of C will be denoted by ker C,

and it is assumed that rank C = m. The minimal polynomial (m.p.) of A will be

written a (X) = a (X) a- (X) where the zeroes of a (X) (a- (X)) lie in the closed
A A A A A

right half (open left half) C +( - ) of the complex plane. a(A) will denote the spectrum

of A and A is stable if a(A) C C-. X+(A) = ker a+ (A) will denote the unstable
A

eigenspace of A, and to highlight our results it is assumed (tacitly) that X+(A) 0 0;
A A

i.e., A is not stable. If T and T = T + 6T are real p X q matrices, T is the

perturbed value and 6T is a perturbation of T. For a given real number e > 0, the

class of arbitrary e perturbations of T, denoted by 92 (e), is defined to be the class

of real p X q matrices ST} , where each 6T is constrained only by the requirement

that the absolute value of each element be bounded by e. A class of matrices (6T}

is defined to be a class of arbitrary "small" perturbations of T if 8T) = 2T(e) for

some e > 0. In the sequel we use the well known fact [2-4] that if T is a real

n X n stable matrix, there exists e > 0 such that T + 8T is stable for every 6T in

2 T(e).

Observer action requires that

tim e(t) - im (x(t) - z(t)) = 0 V xo eX, zo eX (5)

A necessary condition for (5) to hold is that there exist Ko , such that A - KoC is

stable; it is assumed that such a choice of Ko exists and has been made. To consider

the effect of observer parameter perturbations on (5), assume that (3) and (4) are not

necessarily satisfied and define
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6M M - (A - KC) (6)

6K - K - K0  (7)

Since M and K in the realization (2) represent physically distinct entities, we consider

only independent classes of perturbations in M and K; thus, for example, the classes

of perturbations we consider must include the possibility that 6K = 0 when 6M * 0

and vice versa.*

Theorem 1. With the observer configuration (2), the necessary conditions for

observer action (5) to be preserved under independent perturbations 6M and 6K are

that these perturbations satisfy

X+(A) C ker 6M (8)

and

X+(A) C ker 6KC (9)

If (8) and (9) hold, there exists e > 0, such that (5) holds for every 6M in 2 M(e)

that satisfies (8).

Proof. From (1), (2), (6), and (7)

e(t) = (A - KoC + 6M) e(t) - 6M x(t) - 6KC x(t) , (10)

and therefore (5) requires, since 6M and 6K are independent, that

* A more precise definition of independence of the classes (6M} 6K} is not made

because this would entail detailed consideration of a (perhaps stochastic) model for

generating these perturbations. For the purposes of the paper the operational statement

(underlined) above suffices.
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6M x(t) = 0 V xo eX (11)

and

lim SK C x(t) = 0 V xo eX (12)

which is equivalent [5] to (8) and (9). When (11) and (12) hold, (5) is true if and only

if (A - Ko C + 6M) is stable. Therefore, the last statement of the theorem follows from

the fact that A - KoC is stable. U

To state the next result let the matrices M,-A - KoC, 6M and K, Ko , 6K be

parameterized in Rn 2 and 6nm respectively by the points m = (M), mo = (A - KoC),

6m = (6M) and k = (K), K = (Ko ), 6k = (6K).

Theorem 2. Under the conditions of Theorem 1, (5) fails, if A is not stable,

for almost every value of M and K that differ respectively from A - KoC and Ko;

i.e., (5) fails for every point m(k) in 6 n  (nm) except m = mo (k = ko ) and

possibly for values of m (k) lying on a proper algebraic variety in 6 n (.nm).

Corollary. If o(A) C C+, then (5) fails, under the conditions of Theorem 1, for

every independent perturbation of equations (3) and (4).

Proof of Theorem 2. Since A is not stable, X+(A) 4 0, and since A - Ko C

is stable, it follows from detectability of the pair (A,C) that C X+(A) k 0. Hence, the

relations

6M X+(A) = 0 (13)

6K C X+(A) = 0 (14)
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determine proper subspaces S and Q of ? 2 and 6? n with the property that (13)

and (14) are satisfied if and only if 6m and 6k lie respectively in S and Q. Thus

(8) and (9), and hence by Theorem 1, (5) fail unless m lies on the proper variety

mO + S and k lies on the proper variety ko + Q. U]

Proof of the Corollary. If u(A) C +, X+(A) = X and since rank C = m,

C( = Y. Hence, (13) and (14) imply that 6M = 0 and 6K = 0; i.e., the subspaces S

and Q shrink to zero dimensional subspaces. U

By Theorem 2 almost any difference between the observer gain matrix K and

the matrix Ko that enters equation (3) will cause the observer action to fail. This

difficulty clearly cannot possibly disappear unless the same physical elements that realize

K also actually realize Ko . This can only be accomplished if the observer is realized as

z(t) = A z(t) + K (y(t) - Cz z(t , (15)

where

A A , (16)

= K0  , (17)

C= C , (18)

and as before A - KoC is stable. Although (15) through (18) are mathematically

equivalent to (2) through (4), construction of the observer according to (15) through

(18) involves a feedback implementation as opposed to the open loop implementation of

(2); also (15) involves reproduction of the possibly unstable matrix A, whereas in (2)

M is always stable. In the remainder of the paper we analyze the observer (15) with

respect to perturbations in (16) through (18). Assume, therefore, that (16) through

(18) are not necessarily satisfied and let

6



AA = A - A (19)

6K = K - Ko (20)

6C = C - C (21)

As before, only independent perturbations in A, K and C are considered.

Theorem 3. With the observer configuration (15) the necessary conditions for

observer action (5) to be preserved under independent perturbations 6A, 6K, and 6C

with 6K arbitrary are that

X+(A) C ker 6A (22)

and

X+(A) C ker 6C . (23)

Subject to (22) and (23), observer action is preserved under arbitrary "small" perturba-

tions in 6K and admissible [i.e., satisfying (22) and (23)] "small" perturbations 6A

and 6C; i.e., there exists e > 0 such that (5) holds for all matrices 6K in E2(e)

and all matrices 6A and 6C in 92A(e) and S2C(e) that satisfy (22) and (23).

Corollary. If o(A) C W+, observer action is preserved, under the conditions of

the theorem, for a class of arbitrary "small" perturbations 6K, if and only if

A = A (24)

C = C (25)

7



Proof of Theorem 3. From (1) and (15) through (21)

&(t) = (A - KoC + 6A ) e(t) - 6A x(t) + Ko 6C x(t) + 6K 6C x(t) , (26)

where

6SA = A - Ko 5C - 6KC - 6K 6C (27)

Convergence of e(t) requires, since the perturbations are to be independent, that

litm SA x(t) = 0 V xo eX , (28)

t-ir Ko 5C x(t) = 0 V xo X , (29)

and

tir S6K C x(t) = 0 V x eX . (30)

Equation (30) holds for arbitrary 6K if and only if

-m 6C x(t) = 0 V x eX . (31)

Equation (31) implies that (29) and (28) through (30) are now equivalent to (22) and

(23).

Now, assuming that (22) and (23) are true, it follows from (26) and (28) through

(30) that e(t) converges if and only if A - Ko C + 6A is stable. Since A - Ko C is

stable, there exists e* > 0 such that for every SA in 2A (e*), (A - KoC + 6A) is
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stable. From (27) it follows that there exists e (depending on e*) such that for each

6A in 2A (e), 6C in 2C (e), and 6i in n2~(e), the corresponding 6A is in
A C K

The proof of the corollary is identical to the proof of the corollary to Theorem 2.

Conditions (22) and (23) imply that the observer maps A, C must be such that

for each x e X(A),

Ax = Ax

and

Cx = Cx

If A and C are represented, in a suitable coordinate system, as

A 0
A =  A C =[C +  C-]

where A+ and C+ represent the restriction of A and C respectively to X+(A),

then (22) and (23) imply that in the same coordinate system A and C must have the

forms

A = C = [ C+ ]

Therefore, the theorem states that the observer (15) must contain a faithful copy of at

least the unstable part of the system. Subject to this requirement, however, the realiza-

tion (15) is superior to the realization (2). To emphasize this important fact, we state

the following theorem, the proof of which is obvious from the previous results.
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Theorem 4. Let a(A) C Q+ and assume that the open loop observer (2) can be

constructed so that M = A - Ko C is satisfied exactly, and the closed loop observer is

constructed so that A = A and C = C are satisfied exactly. Then, with the observer

(2), observer action fails for every gain matrix K that is not precisely equal to Ko,

and for the observer (15) observer action is preserved for every gain matrix K = Ko + 6K

with 6K contained in £2i(e) for some e > 0.

III. EXAMPLE

To illustrate the above results we consider observer design for the discrete system,

x(k + 1) = A x(k) y(k) = C x(k), k = 0, 1,...,

with

A = C = [0 1]

1  3
and x1 (O) = 1, x 2 (0) = 2. Assuming that a deadbeat error response is desired, we have

-2
Ko = [

3

thus, the open loop observer is the discrete analog of (2), with

M = and K =  [
S 010 3

10



and the closed loop observer is the discrete analog of (15), with

A= , C = [0 1] , and K =

The initial state of the observer is assumed to be zero in each case; i.e., z1 (0) = z 2 (0) = 0.

The error responses el(k) = x, (k) - z 1 (k) and e2 (k) = x2 (k) - z2 (k) , k = 0, 1, 2, ...,

for the open and closed loop observer with various perturbations, are displayed in Tables

1 through 5 (correspondingly, Figs. 1 through 5). The observer error is seen to diverge

for the open loop observer with 6K / 0 (Fig. 2), and the closed loop observer with

6A * 0 (Fig. 5), in accordance with what is expected from Theorem 4; on the other

hand the closed loop observer (with 6A = 0, 6C = 0) regulates the error in the face of

6K - 0 (Figs. 3 and 4), although in Fig. 4 where the nonzero element of 6K is

25 percent of the nominal, the error response while convergent is noticeably different

from deadbeat.

IV. CONCLUDING REMARKS

In the treatment above, satisfactory observer action was considered to be

equivalent to the minimal requirement that the observer error merely converge asymp-

totically. Thus, the theorems are directed at specifying those classes of perturbations

under which the observer error remains uncoupled from the unstable system modes; in

fact, for an arbitrary set S of the modes of A with eigenspace XS(A), the theorem

statements with X+(A) replaced by XS(A) specify those perturbations that guarantee

that the error will not contain characteristic exponents corresponding to the modes S.

If the observer is used in a control configuration, the error will usually be required to

converge faster than the fastest decaying modes of A; in this case X (A) = X and

from Theorem 4 and the two corollaries it follows that the observer (2) cannot tolerate

11



any perturbations at all and that the observer (15) cannot tolerate perturbations in A,

C but can accommodate arbitrary "small" perturbations in K. However, it should be

noted that the number of fixed parameters in either realization is n2 + nm.

The results of this paper have direct application to the servomechanism problem

[5-10] where the disturbance and command signals are generated as the outputs of

autonomous, unstable linear systems. In various treatments of this problem [5, 9, 10],

observers have been proposed for predicting the states of the disturbance and command

signal generators required for implementing the control law. The results of this paper

prove that such designs require highly accurate models of these generators and equally

precise hardware to duplicate these models. Of course these facts are intuitively clear

from classical feedback theory, if the observer is regarded as a servomechanism tracking

the state of system (1).

It should be pointed out that from Theorem 2 and its corollary, it follows

that the reduced order observers that have been reported in the literature to date (see

Reference 1 and the references cited therein) are never "robust"; i.e., they cannot

tolerate the slightest perturbation in their parameters. This is true since all these

observers are realized in the open loop form (2). In fact the general conditions under

which a reduced order observer can be realized in feedback form do not seem to have

been reported in the literature and it may well be that minimal order observers will fail

to be "robust" in many cases. In any event, it should be clear that the problem of

designing low order "robust" observers is a fruitful and important area of research.

Finally. the paper should generate some rethinking on the "observed state feedback"

design philosophy so widely accepted by control theorists and stimulate renewed efforts to

systematize design of classical type compensators for multivariable systems. The least one

can say about these compensators is that they are "robust" and provide, via gain and phase

margin, a good degree of parametric stability.

12



TABLE 1. IDEAL (PERTURBATION-FREE) OBSERVER

k 0 1 2 3 4 5 6 7 8 9 10

el 1 0 0 0 0 0 0 0 0 0 0

e2  2 1 00 0 0 0 0 0 0 0

TABLE 2. OPEN LOOP OBSERVER WITH 6M = 0 and 6K = [001

k 0 1 2 3 4 5 6 7 8 9 10

el 1.00 -0.02 -0.01 -0.17 -0.37 -0.77 -1.57 -3.57 -6.37 -12.77 -25.57

e2  2.00 1.00 -0;02 -0.01 -0.17 -0.37 -0.77 -1.57 -3.57 -6.37 -12.77

TABLE 3. CLOSED LOOP OBSERVER WITH A = 0, 5C = 0, and K = [

k 0 1 2 3 4 5 6 7 8 9 10

el 1.00 -0.02 -0.01 2 x 10 1x10 4 -2 x 10 -1 x10 2 x 10- 8 1 x 10 -2 x 10 -2x10 -1 x 10- 10

e2 2.00 1.00 -0.02 -0.01 2 x 10 1 x 10 -2 x10 -1 x 10 2 x 10 1 x 10 -8 -2 x 10 1 0

TABLE 4. CLOSED LOOP OBSERVER WITH 6A= 0, 6C= 0, and 6K = [05]

k 0 1 2 3 4 5 6 7 8 9 10

el 1.00 -1.00 -0.50 0.50 0.25 -0.25 -0.12 0.12 0.06 -0.06 0.03

e2  2.00 1.00 -1.00 -0.50 0.50 0.25 -0.25 -0.12 0.12 0.06 -0.06

13



TABLE 5. CLOSED LOOP OBSERVER WITH 6A = 0.0 , 6K = 0, AND 6C = 0

k 0 1 2 3 4 5 6 7 8 9 10

e, 1.00 0.00 -0.06 -0.17 -0.37 -0.77 -1.57 -3.18 -6.38 -12.80 -25.83

e2  2.00 1.00 0.00 -0.06 -0.17 -0.37 -0.77 -1.57 -3.18 -6.38 -12.80

4 t

3 e, e2

2

202 ee

0 I IIIIIII
0 1 2 3 4 5 6 7 8 9 10

- k -

Figure 1. Error response of ideal (perturbation-free)
deadbeat observer.
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